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ABSTRACT

Since their discovery carbon nanotubes have attracted much interest for their peculiar
electronic properties which go from metallic to semiconducting behaviour, depending both
on diameter and chirality. The exact value of their band gap is obviously a crucial point
to be addressed because it enters in the nanotube application as microelectronic devices.
By making use of an efficient GW scheme, previously tested on bulk systems, as well as of
a model screening function, we obtaind for the first time excitation energies and band-gap
values for carbon nanotubes. Results for (6,0) and (7,0) will be presented and discussed.

Introduction

Since their discovery [1] in 1991 carbon nanotubes have attracted much attention for
their peculiar mechanical and electronic properties. As it is well known, their structure can
be thought as obtained by rolling up a graphite sheet in such a way that the carbon atoms
along a given direction are arranged in parallel rings orthogonal to the tube axis. If after
the wrapping procedure a lattice site of a graphite sheet turns out to coincide with the site
originally displaced by a vector

¢ = najz -+ mas, (1)

a; = (6v/3,0) and ag = (av/3/2, 3a/2) being the graphite lattice vectors, the nanotube
is uniquely identified by the indices (n,m). Actually both the tube diameter d and the
chiral angle, i.e. the angle between ¢ and a;, can be easily expressed in terms of n and m:
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; (3)

a = 1.42A being the nearest neighbor distance of carbon atoms in graphite. For obvious
geometrical reasons chiral angles range between § = 0 and § = 7/6, where the two limiting
cases are strictly speaking not chiral ones. The = 0 and # = 7/6 wrappings correspond
to (n,0) and (n,n) indices and are popularly known as zig-zag nanotubes and armchair
nanotubes respectively.

Carbon nanotubes diameters range in the nanometer size, whilst their lenght is in the
millimiter size, and small changes in helicity and diameter can shift their electronic char-
acter from insulating to semiconducting and to metallic. Moreover spontaneous or induced
mechanical distortions can dramatically affect their properties. If one now takes into ac-
count the possibility of growing multiwalled nanotubes, i.e. co-axial carbon tubes, or of
arranging them in bundles, one can easily understand how many different physical prop-
erties can be obtained by modifying the same basic object. Obviously these systems have
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been submitted to theoretical investigation, in order to reproduce the experimental results
and to predict specific material properties. [2, 5]

We have reported in a previous paper [6] the results of our calculations on several
armchair and zig-zag single-wall finite nanotubes, performed by the discrete variational
method (DVM) within DFT-LDA approximation. We refer to the original paper, as well as
to other DVM-bascd papers for discussing the reliability of such computational approach
[7, 8, 9]. In principle our results should be of comparable quality with any LDA results
for similar systems. Actually we can use them also for estimating the electronic properties
of infinite nanotubes, provided that the border effects in the local densities of states go
rapidly to zero, as soon as states localized on the inner carbon rings are considered. In this
way we have been able to obtain predictions for the gaps of quite large carbon nanotubes
in reasonable agreement with previous LDA results, if any, and with a very reasonable
computational effort.

Still remains the problem of a direct determination of the LDA gaps in infinite carbon
nanotubes as well as the problem of correctly estimating their excitation properties. In
fact, DFT-LDA approximation has been successfully used for determining the ground-state
electronic properties of a large class of materials ranging from bulk systems, surfaces and
etherostructures to atoms and clusters. [10] On the other hand if DFT-LDA is used to
determine the quasiparticle (QP) spectra of many-electron systems in most cases results
are in disagreement with experiments.[10] For example, in the case of bulk semiconductors,
assumption of the Kohn-Sham (K-S) eigenvalues as electronic QP energies leads to a sys-
tematic underestimate of the electronic transition energies with respect to the experiment
(band-gap problem). [11, 12, 13]

QP properties of many-electron systems are correctly evaluated starting from the QP
equations, in which the full electronic self-energy operator appears. [14] The self-energy
operator is treated usually in the GW approximation (GWA) by starting from DFT-LDA
eigenvalues and eigenfunctions used to evaluate the one-electron Green function and the
screened Coulomb interaction.[11, 12} Until now the numerical effort required to calculate
the dynamical screened interaction (W) for the GW self-energy has restricted the systematic
solution of the QP problem mainly to simple structures. [15] In this work for the first time
GW self-energy corrections for the (6,0) and (7,0) nanotubes have been calculated. The
present results demonstrate the possibility to apply our method to larger graphenc systems.

Computational Method

Ab initio calculations of the electronic properties of infinite isolated carbon nanotubes
have been performed by using a plane wave basis set and ionic pseudopotentials for Carbon
after Troullier and Martins [16]. Angular components of ionic pseudopotentials up to [ = 2
have been included . In particular we have considered the case of zig-zag nanotubes with
indeces (6,0) and (7,0). A repeated-cell approach has been used, and in order to correctly
simulate the isolated structures of nanotubes, distances in the directions orthogonal to the
nanotube axis have been accurately chosen. Moreover we have performed two different
kinds of convergence tests, i.e. with respect to encrgy cutoff and to dimensions of the
simulation cell. In the case of the (6,0) structure a 3ax12ax12a cell with 24-atom basis has
been used. (see figure 1)

While 3a = 8 a.u. is the length of the unitary structure to be repeated along the graphene
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Figure 1: simulation cell for (6,0) structure

nanotube, the 32¢.u. sides garantee a sufficiently large distance between atoms belonging
to different nanotubes (as a term of comparison the interplanar distance in graphite is
d=6.34 au.. ).

Within our simulation cell the minimal distance between carbon atoms belonging to
different nanotubes turns out to be greater than 23 a.u. For what attains to the energy
cutoff, values up to 30 Ry have been considered. In sampling the first BZ for calculating the
nanotube charge density only the I' point has been used. This choice has been obviously
dictated by the need of drastically reducing the computational effort in such a large unit
cell. On the other hand the BZ of the system is correspondingly small, which should justify
our choice, as we shall see later on in the discussion of the results. The same technicalities
have been used in calculating LDA energies of (7,0) nanotube.

An efficient DFT-GW method has been used to determine the quasiparticle correction
of the band-gap of (6,0) and (7,0) nanotubes. It has been originally developed for the calcu-
lation of quasiparticle energies of cubic semiconductors [17] and then succesfully extended
to systems of lower symmetry such as SiC polytypes [18] and oxides [19]. Local fields effects
in the screening of the material are described within an LDA-like approximation, and dy-
namical effects are treated by expanding the self-energy operator to linear order in energy.
The anisotropy of the inverse dielectric matrix is taken into account simply averaging over
three directions:

€00 €| + €] (4)
a and b being two weighting factors which take into account the different screening properties
along the tube and in the orthogonal directions. If we imagine to start from the structure
of the graphitic plane we have that ¢ is the in plane component and €, is the component
perpendicular to the plane. This simple approximation permits us the use of a cubic cell
to perform self-energy calculations with a strong reduction of computational effort. In
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Table I: Band gap energies for (6,0) and (7,0) zig-zag nanotubes calculated with DVM
approch (first column) DFT-LDA approach (second column). In the third column previous
DFT-LDA results after Ref.[20]

(nm) DVM  LDA(pw)  LDA(Ref.[20])
(6,00 0.0 Metal(~0.74) Metal(—0.83)
(7,00 104 0.18 0.09

Table II: GW quasi-particle corrections to band gap encrgies for (6,0) and (7,0) zig-zag
nanotubces calculated with different e, values (see text).The encrgics are in eV

€0 (6,00 (7,0)
240 0.04
7.06 041 0.651

order to keep a sufficiently large distance between atoms of different isolated nanotubes
the cube side must be at least twice as large as the minimal 3a one, so that 8 carbon
rings are included along the cell vertical axis. In this way the minimal distance between
atoms belonging to different (6,0) nanotubes turns out to be at least 1.14 times the minimal
distance between atoms belonging to different planes in graphite. In (7,0) nanotubes the
corresponding distance is 0.91 times that of graphite. The results for the gap values will
confirm this assumption. The self-energy correction of the eigenvalue E?, relative to the
Bloch state |nk > is calculated according to equation [17]

S0+ B3 + SRV(EY) - VA -
, 5

1+ ﬁnk
where the terms appearing in the third member of the equation are the static Coulomb
Hole (COH) and Screened Exchange terms (SEX), the expectation value of the DFT-LDA
exchange-correlation potential,and of the two dynamical terms LPYY and g (see Refs. [17]
and [18]). The singularity of the Coulomb potential in the screened-exchange part of the

electronic self-energy is treated by using auxiliary functions of the appropriate symmetry
[18].

Ank = Enk - Egk =

Results and Discussion

In Tab. I we have shown the results of our LDA calculation for the (6,0) and (7,0)
nanotubes compared with previous results. We note the our result for the gap of the {7,0)
structure is slightly different from the result of Ref. [20]. This difference can be reasonably
explained by taking into account the different cutoff, and the different relaxation of the
structure.

In any case our calculations reproduce the same trend previously reported in ref. {20],
with semiconduting properties for the (7, 0) structure and metallic properties for the (6, 0)
one. The band structure and the energy-level ordering results in good agreement too.
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In Tab. II we have reported the GW corrections to the band gap values obtained
with our method for the (6,0) and (7,0) zig-zag nanotubes. The corrections are calculated
with €y, obtained from equation (4) . The two components are estimated from graphite
parameter, in particular we follow ref. [21] and we put the value ¢, = 2.4 and for € we
use a value 100 times greater [21]. With a =1 and b = 0, i.e. complete metallic screening,
for the (6,0) a very small GW correction results. On the other hand even with a more
semiconducting behaviour ¢, = 7.06, obtained with ¢ = 2/3 and b = 1/3 in equation 4 the
structure maintains a metallic character. For the (7,0) nanotube we confirm including GW
corrections the DFT-LDA prediction of a semiconducting behaviour, with a enhancement
of the gap due to self-energy corrections.

To summarize, we have presented in this paper DFT- LDA calculations with GW cor-
rections for the band-gap of (6,0) and (7,0) carbon nanotubes. Qur DFT-LDA results have
been compared with previous theoretical ones in order to prove the accuracy of the present
computational method. For (6,0) nanotube our LDA results are in good agreement with
previous similar calculations and our GW corrections confirm the metallic character of this
tube. On the other hand (7,0) nanotubes appears to be semiconductors with a relevant
GW gap correction. Since C nanotubes as small as 3,3) ones have been detected [22, 23],
one can expect that specific measurements even for small nanotubes can be available in
the next future, thus eventually confirming our predictions. Moreover the combination of
different approaches, say cluster calculations, repeated cell ones and GW corrections, de-
pending on the properties one is looking for, turn to be very useful in addressing such kind
of systems.
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